Abstract

A protective ceramic coating of about 50 μm thick on a friction stir welded (FSW) joint of AZ31B magnesium alloy was prepared by plasma electrolytic oxidation (PEO) in silicate electrolyte. Electrochemical corrosion behavior of uncoated and coated FSW joints was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The equivalent circuits of EIS plots for uncoated and coated FSW magnesium alloy were suggested. The corrosion resistance of FSW magnesium alloy depended on microstructure of the FSW joint. The heat-affected zone with severe grain growth was more susceptible to corrosion than the stir zone and base metal. The PEO coating consisted of a porous outer layer and a dense inner layer. The inner layer of PEO coating played a key role on corrosion protection of the FSW joint of magnesium alloy. Meanwhile, corrosion potential, corrosion current density and impedance at different zones of coated FSW joint were almost the same. The PEO surface treatment significantly improved the corrosion resistance of FSW joints of AZ31B magnesium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.