Abstract

The microstructure-dependent corrosion resistance of dual structured fine-grained Mg-7.5Li-3Al-1Zn has been investigated. The alloys were extruded using extrusion with a forward-backward rotating die (KoBo, a newly developed SPD method) at two different extrusion ratios. The fine-grained microstructures formed in the alloys were characterized, and the influence of grain refinement on corrosion resistance was analyzed. For fine-grained (α + β) Mg-Li alloys, a higher extrusion ratio led to more intensive grain refinement; however, this relationship did not improve their corrosion resistance in a chloride-containing solution. The corrosion resistance of the alloys was mainly controlled by the refinement of α(Mg) and β(Li), along with the distribution of second phases. The presence of MgLi 2 Al at grain boundaries facilitated their dissolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call