Abstract
Corrosion behavior of a multifunctional biomedical titanium alloy Ti–24Nb–4Zr–8Sn (wt.%) in 0.9% NaCl, Hank's solution and artificial saliva at 37°C was investigated using open circuit potential, impedance spectroscopy and potentiodynamic polarization techniques, and some results were compared with pure titanium and Ti–6Al–4V alloy. The results showed that the alloy exhibited good corrosion resistance due to the formation of a protective passive film consisting mainly of TiO2 and Nb2O5, and a little of ZrO2 and SnO2. Ca ions were detected in the passive film as the alloy immersed in Hank′s and artificial saliva solutions and they have negative effect on corrosion resistance. The EIS results indicated that either a duplex film with an inner barrier layer and an outer porous layer or a single passive layer was formed on the surface, and they all transformed into stable bilayer structure as the immersion time increased up to 24h. The polarization curves demonstrated that the alloy had a wider passive region than pure titanium and Ti–6Al–4V alloy and its corrosion current density (less than 0.1μA/cm2) is comparable to that of pure titanium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.