Abstract

Magnesium is a biodegradable metal that has significant potential advantages as an implant material. However, the fast degradation rate in the biological environment has limits the application. In this article, corrosion behaviors of as-cast and hot rolled pure magnesium in 0.9% NaCl, Ringer’s, and Tas-SBF solutions were studied. Potentiodynamic polarization and hydrogen evolution test were employed to assess the corrosion behaviors. The magnesium specimens were characterized using field emission scanning electron microscopy equipped with energy-dispersive X-ray analysis and X-ray diffraction. The as-cast specimens in 0.9% NaCl and Ringer’s solutions had lower corrosion potentials and corrosion rates than the hot rolled specimens. However, the as-cast specimen in the Tas-SBF solution had a higher corrosion potential and a lower corrosion rate than the hot rolled specimen. Only the specimens in the Tas-SBF solution showed passivation behavior due to the presence of HCO3 − ions. The hot rolled specimen could form apatite more easily on its surface than the as-cast specimen in Tas-SBF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.