Abstract

Microstructure characterization of corrosion behavior of an alumina forming austenitic (AFA) steel exposed to supercritical carbon dioxide was conducted at 450–650°C and 20MPa. At low temperature and short exposure times, the oxidation kinetics were parabolic and the oxide scales were mainly composed of protective and continuous Al2O3 and (Cr, Mn)-rich oxide layers. As the temperature and exposure time increased, the AFA steel gradually suffered breakaway oxidation and its oxide scales showed a multilayer structure mainly composed of Fe3O4, (Cr, Fe)3O4, NiFe/FeCr2O4/Cr2O3/Al2O3, FeCr2O4/Al2O3, and NiFe/Cr2O3/Al2O3, in sequence. The corrosion mechanism based on the microstructure evolution is discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.