Abstract
The corrosion protection of aluminum flake pigments has been extended by means of an encapsulating inorganic/organic silica/polystyrene hybrid nanolayer. A silica nanolayer encapsulated the surface of aluminum flakes (Al) by hydrolysis and polycondensation of tetraethylorthosilicate via sol–gel process to yield Al/Si flakes. Then, 3-methacryloxypropyltrimethoxysilane (MPS) was used as surface modifier which has polymerizable groups to participate in polymerization reaction (Al/Si/MPS). A polystyrene (PS) coating layer was applied on Al/Si/MPS flakes by free radical polymerization of styrene initiating with Azobisisobutyronitrile at 60 °C and subsequent washing of free chains with solvent yielded Al/Si/PS flakes. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy showed that silica and PS nanolayers were formed on the aluminum flakes. The attached PS chains on the surface were detached by hydrofluoric acid aqueous solution and analyzed by gel permeation chromatography (GPC). Also, a transmission electron microscopy image showed clearly that the encapsulating layers are in the scale of nano. Good results were obtained in terms of corrosion protection in acidic and alkaline solutions, indicating that the silica/polymer hybrid nanolayer coating acts as an efficient protective film. After encapsulating the flakes, the evolved hydrogen volume was dropped and hybrid nanolayer resulted in no evolved hydrogen volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.