Abstract

Due to the light weight and good corrosion resistance, nowadays aluminum and its alloys are used in different industries in order to decrease the maintenance costs and also to increase the equipments lifetime cycle. When aluminum and its alloys are exposed to the extreme environments, the native aluminum oxide film lose the anticorrosive properties that lead to the damage of equipments and increasing the costs. In order to improve the anticorrosive and mechanical performances of aluminum and its alloys, different techniques are used: organic coatings, the growth of a thick aluminum oxide film through different methods, etc. The most used method for aluminum oxide growth is anodic oxidation. Anodic oxidation is an electrochemical method that allows to growth an aluminum oxide film with controllable characteristics. The aim of present paper was to growth on 1050 aluminum alloy surface nanoporous aluminum oxide films with improved anticorrosive properties. The obtained nanoporous aluminum oxide films were characterized morphological and structural by scanning electron microscopy coupled with X-ray energy dispersive analyzer. The anticorrosive properties were evaluated by electrochemical methods such as: open circuit potential, electrochemical impedance spectroscopy and cyclic voltammetry. The results showed that anodic oxidation treatment improve the anticorrosive performances of 1050 aluminum alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call