Abstract

The present investigation aims to study the effect of various ions present in nuclear high-level waste (HLW) (acidic) medium on the corrosion resistance of Alloy 625, with solution-annealed and sensitized microstructure. The heat-affected zones are prone to sensitization during welding of components and subsequent exposure to acidic waste during service could result in intergranular corrosion in these regions and hence it was attempted to study the corrosion behavior of the alloy under sensitized conditions. Double loop electrochemical potentiokinetic reactivation test was carried out to obtain the extent of chromium depletion. Potentiodynamic anodic polarization and electrochemical noise investigations were carried out on Alloy 625 in 3 M nitric acid and simulated nuclear HLW medium (prepared in 3 M nitric acid) at 298 K and 323 K. The study showed that the alloy possess good corrosion resistance in 3 M nitric acid and simulated HLW medium. However, a marginal decrease in the corrosion resistance occurred in simulated HLW when compared to the plain acid, as observed from an increase in passivation current density, decrease in transpassive potentials, and decrease in electrochemical noise resistance. Increase in temperature of the medium and change in microstructure from solution-annealed to sensitized state further decreased the corrosion resistance of Alloy 625. Electrochemical noise time records obtained at open circuit conditions showed a stable passive film for 22 h of immersion of the alloy in 3 M nitric acid and simulated HLW. However, the amplitude of current fluctuations was higher for the sensitized microstructure when compared to the solution-annealed microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.