Abstract

The corrosion behavior of an Fe–20Mn–11Al–1.8C–5Cr alloy prepared by spark plasma sintering was investigated via immersion tests in molten aluminum at 750 °C for 1 and 4 h, respectively, and a hot work steel (AISI H13) was included as a reference. The experimental results show that the corrosion rate of Fe–20Mn–11Al–1.8C–5Cr alloy is ~ 24% of that of H13 steel, suggesting that Fe–20Mn–11Al–1.8C–5Cr alloy in molten aluminum possesses better corrosion resistance than H13 steel. Detailed analysis show that κ-carbide ((Fe, Mn)3AlC x ) and Cr7C3 carbide precipitated in the matrix play a key role in enhancing the corrosion resistance of Fe–20Mn–11Al–1.8C–5Cr alloy in molten aluminum. Both of them show better corrosion resistance than γ-Fe matrix and H13 steel, and can also take on the role of roots in grasping the corrosion product and restrain them from spalling into the molten aluminum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.