Abstract
Corrosion experiments of 9Cr-ODS steel were carried out in static Li at 873K for 250h and compared with those of 9Cr-ODS in Pb–Li at the same exposure conditions. After exposure to liquid Li, 9Cr-ODS showed slight weight loss and decrease in hardness near surface. The tensile property exhibited a negligible change at 973K and the creep property degraded at 973K. By metallurgical analyses, 9Cr-ODS demonstrated a non-uniform corrosion behavior by preferential grain boundary attack and pronounced nodule-like morphology. The slight depletion of Cr was detected to about 15μm in depth by chemical composition analyses. According to the calculation of free energy of formation, the nano-scale oxide particles of TiO2 in 9Cr-ODS were thermodynamically less stable while Y2O3 were more stable compared with those of Li2O in Li environment. However, Y2O3 may be reacted with Li to form YLiO2. The mechanism of corrosion was proposed as the slight dissolution of Cr and Fe in matrix into liquid Li, chemical interaction of nano-scale oxide particles with Li, preferential grain boundary attack and penetration of Li, and finally development of extreme nodule-like structure during cleaning of Li. On the contrary, 9Cr-ODS showed much larger weight loss and depletion of Cr near surface but less marked corroded morphology in Pb–Li than in Li, which may be derived from higher solubility of Cr and Fe and lower activity of Li in Pb–Li than in Li.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.