Abstract

The corrosion behavior of an austenitic stainless steel (UNS S30400) has been characterized in a 10,000 h test conducted in hydrogenated, ammoniated water at 260 °C. The corrosion kinetics were observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 1.16 mg dm −2 h −1/2. X-ray photoelectron spectroscopy, in combination with argon ion milling and target factor analysis, was applied to provide an independent estimate of the rate constant that agreed with the gravimetric result. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and elemental state, it was found that: (a) corrosion occurs in a non-selective manner, and (b) the corrosion film consists of two spinel oxide layers––a ferrite-based outer layer (Ni 0.2Fe 0.8)(Fe 0.95Cr 0.05) 2O 4 on top of a chromite-based inner layer (Ni 0.2Fe 0.8)(Cr 0.7Fe 0.3) 2O 4. These compositions agree closely with the solvi phases created by immiscibility in the Fe 3O 4–FeCr 2O 4 binary, implying that immiscibility plays an important role in the phase separation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.