Abstract

A gradient Mg-8 wt % Si alloy, which was composed of the agglomerated Mg2Si crystals coating (GMS8-1) and the eutectic Mg–Si alloy matrix (GMS8-2), was designed for biodegradable orthopedic implant materials. The bio-corrosion behavior was evaluated by the electrochemical measurements and the immersion tests. The results show that a significant improvement of bio-corrosion resistance was achieved by using the gradient Mg–Si alloy, as compared with the traditional Mg-8 wt % Si alloy (MS8), which should be attributed to the compact and insoluble Mg2Si phase distributed on the surface of the material. Especially, GMS8-1 exhibits the highest polarization resistance of 1610 Ω, the lowest corrosion current density of 1.7 × 10−6 A·cm−2, and the slowest corrosion rate of 0.10 mm/year. In addition, GMS8-1 and GMS8-2 show better osteogenic activity than MS8, with no cytotoxicity to MC3T3-E1 cells. This work provides a new way to design a gradient biodegradable Mg alloys with some certain biological functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.