Abstract

AbstractThe corrosion behavior and mechanism of the high‐strength low‐alloy steel‐welded joint fabricated by the multilayer and multipass welding method were investigated using a scanning Kelvin probe, electrochemical measurements, and so forth. The results revealed that the microstructure of the first layer welding zone was dominated by granular bainite and acicular ferrite and was fine and uniform, which exhibited the best corrosion resistance. Whereas, since the average cooling rate decreased with the increase of welding pass, the grain size of the second and third layer weldings gradually grew, and the voltaic potential gradually decreased. In addition, the microstructure of the heat‐affected zone (HAZ) changed from the tempered sorbite structure of the equilibrium phase to the granular bainite or bainite structure of the nonequilibrium phase under the action of heat transfer. The HAZ became the weakest link for corrosion of welded joint, on account of the nonequilibrium organization and galvanic coupling among base metal, weld metal and HAZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.