Abstract
The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.