Abstract
Corrosion reduces the thickness of a structure, making it less safe and reducing its lifespan. In particular, ships are vulnerable to corrosion because they are always submerged in seawater. This corrosion is identified through regular inspections of the ship structure, and gradually increases in scope if no action is taken at an early stage. In this study, we developed a model to detect the corrosion areas and predict the depth of corrosion in the detected areas. The corrosion area detection model used a machine learning model based on Mask R-CNN. The 35,753 images were used to map corrosion images and measured corrosion depths. Four different color maps and regression algorithm were used to predict corrosion depths and their performance was compared. The new attempt to predict the corrosion depth from images in this study will contribute to improving existing corrosion control methods by providing information for corrosion prevention and maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Naval Architecture and Ocean Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.