Abstract
FeCrMnCoSi coating (so-called CaviTec alloy) is recognized as an efficient protective measure to extend the service-life of steel components subjected to severe cavitation erosion. Besides this requirement, many applications also demand coatings with proper corrosion and wear resistances. The aim of this study is to evaluate the pitting corrosion and the sliding wear resistances of CaviTec coatings produced by high-velocity oxygen fuel (HVOF) and deposited onto a 304 stainless steel (SS). The corrosion performances in simulated seawater indicated that these coatings exhibit satisfactory corrosion resistance with regions around the inter-splats representing the preferential weak links sites for pitting corrosion initiation. CaviTec coating wear is characterized by mild delamination followed by severe abrasive wear once the hard-martensitic debris are added in the tribosystem due to the transformation induced plasticity (TRIP) effect. Corrosion and wear results point out that the CaviTec coatings, originally developed to possess high cavitation erosion resistance, also present satisfactory corrosion resistance in seawater-like medium and interesting dry sliding wear performance, which can extend their application domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.