Abstract
Abstract A novel electrochemical-sensing platform based on imprinted bimetallic Fe/Pd (BI-Fe/Pd) nanoparticle has been fabricated for point-of-care diagnostics of oxidative stress marker (3-nitrotyrosine) in biological fluids. Herein, BI-Fe/Pd nanoparticles are used as a platform on which 3-nitrotyrosine imprinted cavities are created using acrylamide as monomer and N - N ′-methylene bisacrylamide as cross-linker. The performance of the obtained imprinted sensor is investigated by cyclic, differential pulse, and square wave voltammetry in stripping mode. The imprinted sensor exhibits high recognition ability and affinity for 3-nitrotyrosine in comparison with the non-imprinted one. In addition, the proposed sensor is capable of measuring 3-nitrotyrosine in aqueous as well as in human blood serum, plasma, and urine samples within the range of 4.90–867.57 µg L −1 and 9.90–867.57 µg L −1 with detection limit of 1.20 µg L −1 and 3.25 µg L −1 by square wave and differential pulse stripping voltammetry, respectively. Imprinted BI-Fe/Pd nanoparticle modified sensor shows high affinity and no interference from blood or urine components. Modified sensor was stored for 45 days at room temperature without any detrimental effects to their binding properties. The high affinity of proposed sensor and the lack of requirement for cold chain logistics make them an attractive alternative to the enzyme-linked immunosorbent assay (ELISA) technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.