Abstract

The ability of cognition and recognition for complex environment is very important for a real autonomous robot. A new scene analysis method using kernel principal component analysis (kernel-PCA) for mobile robot based on multi-sonar-ranger data fusion is put forward. The principle of classification by principal component analysis (PCA), kernel-PCA, and the BP neural network (NN) approach to extract the eigenvectors which have the largest k eigenvalues are introduced briefly. Next the details of PCA, kernel-PCA and the BP NN method applied in the corridor scene analysis and classification for the mobile robots based on sonar data are discussed and the experimental results of those methods are given. In addition, a corridor-scene-classifier based on BP NN is discussed. The experimental results using PCA, kernel-PCA and the methods based on BP neural networks (NNs) are compared and the robustness of those methods are also analyzed. Such conclusions are drawn: in corridor scene classification, the kernel-PCA method has advantage over the ordinary PCA, and the approaches based on BP NNs can also get satisfactory results. The robustness of kernel-PCA is better than that of the methods based on BP NNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.