Abstract

It was recently shown that vapor-liquid coexistence densities derived from Mie and Yukawa models collapse to define a single master curve when represented against the difference between the reduced second virial coefficient at the corresponding temperature and that at the critical point. In this work, we further test this proposal for another generalization of the Lennard-Jones pair potential. This is carried out for vapor-liquid coexistence densities, surface tension, and vapor pressure, along a temperature window set below the critical point. For this purpose, we perform molecular dynamics simulations by varying the potential softness parameter to produce from very short to intermediate attractive ranges. We observed all properties to collapse and yield master curves. Moreover, the vapor-liquid curve is found to share the exact shape of the Mie and attractive Yukawa. Furthermore, the surface tension and the logarithm of the vapor pressure are linear functions of this difference of reduced second virial coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.