Abstract

This document presents a novel method based on Convolutional Neural Networks (CNN) to obtain correspondence matchings between sets of keypoints of several unorganized 3D point cloud captures, independently of the sensor used. The proposed technique extends a state-of-the-art method for correspondence matching in standard 2D images to sets of unorganized 3D point clouds. The strategy consists of projecting the 3D neighborhood of the keypoint onto an RGBD patch, and the classification of patch pairs using CNNs. The objective evaluation of the proposed 3D point matching based on CNNs outperforms existing 3D feature descriptors, especially when intensity or color data is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.