Abstract

Recently, there are comparable revised interests in bubble nucleation seeded by black holes. However, it is debated in the literature that whether one shall interpret a static bounce solution in the Euclidean Schwarzschild spacetime (with periodic Euclidean Schwarzschild time) as describing a false vacuum decay at zero temperature or at finite temperature. In this paper, we show a correspondence that the static bounce solution describes either a thermal transition of vacuum in the static region outside of a Schwarzschild black hole or a quantum transition in a maximally extended Kruskal-Szekeres spacetime, corresponding to the viewpoint of the external static observers or the freely falling observers, respectively. The Matsubara modes in the thermal interpretation can be mapped to the circular harmonic modes from an O(2) symmetry in the tunneling interpretation. The complementary tunneling interpretation must be given in the Kruskal-Szekeres spacetime because of the so-called thermofield dynamics. This correspondence is general for bubble nucleation around horizons. We propose a new paradox from black holes as a consequence of this correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.