Abstract

A way to obtain a correspondence between the first order and second order formalism is studied. By introducing a Lagrange multiplier coupled to the covariant derivative of the metric, a metricity constraint is implemented. The new contributions which comes from the variation of the Lagrange multiplier transforms the field equations from the first order to the second order formalism, yet the action is formulated in the first order. In this way all the higher derivatives terms in the second order formalism appear as derivatives of the Lagrange multiplier. Using the same method for breaking metricity condition and building conformal invariant theory is briefly discussed, so the method goes beyond just the study of first order or second formulations of gravity, in fact vast new possible theories of gravity are envisioned this way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.