Abstract

In the warming world, tropical Pacific sea surface temperature (SST) variation has received considerable attention because of its enormous influence on global climate change, particularly the El Nino-Southern Oscillation process. Here, we provide new high-resolution proxy records of the magnesium/calcium ratio and the oxygen isotope in foraminifera from a core on the Ontong-Java Plateau to reconstruct the SST and hydrological variation in the center of the Western Pacific Warm Pool (WPWP) over the last 360 000 years. In comparison with other Mg/Ca-derived SST and δ18O records, the results suggested that in a relatively stable condition, e.g., the last glacial maximum (LGM) and other glacial periods, the tropical Pacific would adopt a La Nina-like state, and the Walker and Hadley cycles would be synchronously enhanced. Conversely, El Nino-like conditions could have occurred in the tropical Pacific during fastchanging periods, e.g., the termination and rapidly cooling stages of interglacial periods. In the light of the sensitivity of the Eastern Pacific Cold Tongue (EPCT) and the inertia of the WPWP, we hypothesize an inter-restricted relationship between the WPWP and EPCT, which could control the zonal gradient variation of SST and affect climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call