Abstract

Several scapular anatomical coordinate systems have been reported in the literature to describe shoulder kinematics. Unfortunately, the use of different conventions hinders comparison across studies. Further, inconsistencies between a coordinate system and the scapula’s 3D axis of motion means that scapular motion will be incorrectly attributed to axes about which it did not rotate. The objectives of this study were to: 1) determine the extent to which the axes of four common scapular coordinate system conventions correspond to the 3D axis of scapular motion (i.e., instantaneous helical axis, IHA), and 2) report the prevalence of scapulothoracic gimbal lock for each convention. Shoulder kinematics were tracked during scapular plane abduction in 45 participants using biplane videoradiography. Scapulothoracic kinematics were described using the original convention proposed by van der Helm, the convention recommended by the International Society of Biomechanics (ISB), a glenoid-based coordinate system, and a glenoid-oriented coordinate system. The 3D angle was calculated between the IHA and each axis of the four conventions (IHA-axis angular deviations). A repeated measures ANOVA was used to compare IHA-axis angular deviations between conventions. The glenoid-oriented and ISB conventions resulted in the smallest and largest IHA-axis angular deviations, respectively (21.7°±3.6° vs. 30.5°±5.2°, p < 0.01). Gimbal lock was approached in 17.8% of participants when using the original convention, 2.2% when using the ISB convention, and 0% when using the glenoid-based or -oriented conventions. These findings suggest the glenoid-oriented coordinate system may be worthy of further consideration when investigating shoulder kinematics during scapular plane abduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.