Abstract

Context: Investigations of cell/molecular level effects of in vivo exposure of airway mucosa of experimental animals to common irritant gases have demonstrated structural and physiological changes reflective of breaches in epithelial barrier function, presence of inflammatory cell infiltrate and compromised ciliary function. These experimental animal studies provided useful perspectives of plausible, but more subtle pathologic outcomes having relevance to lifestyle exposure to gaseous environmental irritants including tobacco smoke.Methods: Freeze-fracture technology was applied to ultrastructural examination of large airway epithelium, with appropriate controls, from guinea pigs exposed to ozone and of nasal mucosa of human subjects exposed to ozone or sulfur dioxide, and nasal mucosa of active smokers.Results: We documented substantive membrane structural changes to tight junctional complexes and cilia as well as an infiltrate of neutrophils into the surface mucosal layer in exposed animals. These patterns also were evident but not as pervasive among human subjects acutely exposed experimentally to irritant gases and those chronically exposed by their lifestyle to tobacco smoke.Discussion: Our intent was to characterize respiratory tract mucosal membrane disorganization associated with high level acute irritant exposures in an experimental animal model and to evaluate evidence of similar but perhaps more subtle pathologic change associated with lower level experimental or lifestyle exposures. Our studies demonstrate continuity, albeit subtle, of pathologic change from high dosage experimental animal exposure to low dosage human exposures.Conclusions: This study represents the first report of ultrastructural airway epithelial membrane anomalies associated with lifestyle exposure to tobacco smoke irritants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.