Abstract
BackgroundIt is becoming increasingly clear that biological metals such as iron, copper or zinc are involved in synaptic functions, and in particular in the mechanisms of synaptogenesis and subsequent plasticity. Understanding the role of metals on synaptic functions is a difficult challenge due to the very low concentration of these elements in neurons and to the submicrometer size of synaptic compartments. New methodTo address this challenge we have developed a correlative nano-imaging approach combining metal and protein detection. First, stimulated emission depletion (STED) microscopy, a super resolution optical microscopy technique, is applied to locate fluorescently labeled proteins. Then, synchrotron radiation induced X-ray fluorescence (SXRF) is performed on the same regions of interest, e.g. synaptic compartments. ResultsWe present here the principle scheme that allows this correlative nano-imaging and its experimental validation. We applied this correlative nano-imaging to the study of the physiological distribution of metals in synaptic compartments of primary rat hippocampal neurons. We thus compared the nanometric distribution of metals with that of synaptic proteins, such as PSD95 or cytoskeleton proteins. Comparison with existing method(s)Compared to correlative imaging approaches currently used to characterize synaptic structures, such as electron microscopy correlated with optical fluorescence, our approach allows for ultra-sensitive detection of trace metals using highly focused synchrotron radiation beams. ConclusionWe provide proof-of-principle for correlative imaging of metals and proteins at the synaptic scale and discuss the present limitations and future developments in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.