Abstract

Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007), in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and then in the electron microscope (EM). We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide). Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

Highlights

  • A complete understanding of neural mechanisms underlying simple and complex behaviors must include information about synaptic connectivity

  • Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and in the electron microscope (EM)

  • In array tomography (Micheva and Smith, 2007), arrays of ultrathin serial sections of resin-embedded tissue are repeatedly stained and imaged using FLM and scanning EM. This technique has the advantage over other techniques based solely on light microscopy (LM) in that it yields higher axial resolution (resolution is determined by section thickness, i.e., on the order of 70 nm compared to 500 nm in confocal laser scanning microscopy (CLSM), depending on the wavelength and optical properties of the tissue)

Read more

Summary

Introduction

A complete understanding of neural mechanisms underlying simple and complex behaviors must include information about synaptic connectivity. Among the difficulties are that small cellular processes must be followed over hundreds of ultrathin serial sections to obtain the necessary contextual information in the surrounding of the synapse. To simplify this difficult task, EM methods have been designed to stain single neurons or groups of neurons with electron-dense materials (LaVail and LaVail, 1972; Reiner et al, 2000; Xue et al, 2004; Fairen, 2005). Array tomography has been used for visualizing transgenetically labeled structures and endogenous antigens

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.