Abstract

Double fluorescent labelling of rat cerebellar cortex using antibody to glial fibrillary acidic protein (GFAP) and Alexa fluor conjugates for secondary detection for confocal laser scanning microscope (CLSM), field emission scanning electron microscopy (FESEM) of Rhesus monkey cerebellar cortex, ultrathin sectioning and freeze-etching replica method for transmission electron microscopy of mouse cerebellar cortex have been examined in an attempt to obtain a new and more accurate view of three-dimensional image of Bergmann glial cells (BGC) and their topographic relations in the molecular layer. Intense immunopositive GFAP green staining was observed in the BGC and glial limiting layer. Secondary antibody conjugated with Alexa fluor 488 and Alexa fluor 668-1B4 stained in red capillary endothelial cells and microglial cells. BGC morphology revealed the existence of several cell types or subpopulations of BGC. Bergmann glial fibers, in palisade arrangement, branch and rebranch forming a complex glial network in the molecular layer. Field emission SEM and freeze-fracture SEM method show the SE-I image of high mass dense Bergmann glial cytoplasm ensheathing like a veil the Purkinje cell (PC) soma and dendritric arborization. Bergmann glial fibers appeared completely surrounding individual parallel fibers or parallel fiber bundles, terminal climbing fiber collaterals, basket and stellate cells and capillaries. Freeze-etching direct replicas showed the typical orthogonal arrangement of intramembrane particles, corresponding to the large repertoire of BGC receptors. The study reveals three-dimensional Bergmann glial cells heterogeneity and the complex network formed by Bergmann glial cells in the molecular layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.