Abstract

This paper frames co-relation on three feature extraction techniques in ASR system. As compared to primarily used technique called MFCC (Mel Frequency Cepstral Coefficients), PNCC (Power Normalized Cepstral Coefficients) obtains impressive advancement in noisy speech recognition due of its inhibition in high frequency spectrum for human voice. The techniques differ in the way as MFCC uses traditional log nonlinearity and PNCC processing substitute the usage of power-law nonlinearity. Experimental results relay on the fact that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC as well as PLP (Perceptual Linear Prediction) processing for speech recognition in the existence of various types of additive noise and reverberant environments with marginally greater computational cost and the with the usage of clean speech, it does not lowers the decoding accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.