Abstract
Time-resolved spectrum after ultrashort pulse excitation revealed fine structure of instantaneous vibronic absorption spectra in a thiophene derivative. The probe photon energy-dependent amplitudes of molecular vibration coupled to the induced absorption were composed of several peaks. An absorbance-change peak-tracking method revealed four vibronic transitions buried in the time-integrated spectra over several vibrational periods of typical molecular vibration. Four vibronic transitions located at 2.024, 1.921, 1.818 and 1.731 eV were found to be correlated among themselves with respect to the photon energies and intensities of the peaks in the difference absorbance change spectra. From the size and sign of the correlation strengths the mechanism of the vibronic coupling was related to non-Condon mechanism and Herzberg–Teller vibronic coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.