Abstract

The angular and frequency correlation functions of the transmission coefficient for light propagation through a strongly scattering amplifying medium are considered. It is found that just as in the case of an elastic scattering medium the correlation function consists of three terms. However, the structure of the terms is rather different. Angular correlation has a power-law decay and exhibits oscillations. There is no "memory effect" as in the case of an elastic medium. Interaction between diffusion modes is strongly enhanced near the lasing threshold. Frequency correlation scale decreases close to the lasing threshold. We also consider time correlations of the transmission in the case of nonstationary inhomogeneities. We find short- and long-range time correlations. The scale of the short-range correlation decreases, while the long-range correlation scale becomes infinite near the threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.