Abstract

We investigate the effects of quenched disorder, in the form of site and bond dilution, on the physics of the $S=1/2$ antiferromagnetic Heisenberg model on even-leg ladders. Site dilution is found to prune rung singlets and thus create localized moments which interact via a random, unfrustrated network of effective couplings, realizing a random-exchange Heisenberg model (REHM) in one spatial dimension. This system exhibits a power-law diverging correlation length as the temperature decreases. Contrary to previous claims, we observe that the scaling exponent is non-universal, i.e., doping dependent. This finding can be explained by the discrete nature of the values taken by the effective exchange couplings in the doped ladder. Bond dilution on even-leg ladders leads to a more complex evolution with doping of correlations, which are weakly enhanced in 2-leg ladders, and are even suppressed for low dilution in the case of 4-leg and 6-leg ladders. We clarify the different aspects of correlation enhancement and suppression due to bond dilution by isolating the contributions of rung-bond dilution and leg-bond dilution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call