Abstract

Quantum correlations are central to the foundations of quantum physics and form the basis of quantum technologies. Here, our goal is to connect quantum correlations and computation: using quantum correlations as a resource for computation—and vice versa, using computation to test quantum correlations. We derive Bell-type inequalities that test the capacity of quantum states for computing Boolean functions within a specific model of computation and experimentally investigate them using 4-photon Greenberger–Horne–Zeilinger (GHZ) states. Furthermore, we show how the resource states can be used to specifically compute Boolean functions—which can be used to test and verify the non-classicality of the underlying quantum states. The connection between quantum correlation and computability shown here has applications in quantum technologies, and is important for networked computing being performed by measurements on distributed multipartite quantum states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.