Abstract
Lignocellulosic fibres harvested from different plant types exhibit variations in mechanical properties that are associated with their chemical composition and physical features. This diversity indicates that plant fibres could be selected based on their physio-chemical properties for tailored applications such as enhanced vibration damping. In this study, bast, leaf, and mesocarp fibre bundles were investigated to understand correlations between their physiochemical characteristics and their mechanical properties with a particular focus on their vibrational damping ability. Due to the interrelations between the investigated variables such as cellulose content and microfibril angle, a multivariate analysis (principal component analysis) was applied to elucidate trends. The stiffness and strength of the fibre bundles were found to be positively correlated to high cellulose content and low microfibril angle while high toughness was correlated with fibre bundles of high lignin content and high microfibril angle. Conversely, the damping coefficient was found to be positively correlated to fibres containing high level of hemicelluloses, such as those extracted from leafy plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.