Abstract

The mechanical properties of poly(vinyl acetate) (PVAc)/epoxy thermosets as a function of the PVAc content were investigated through dynamic mechanical thermal analysis from −100 to 220 °C and through tensile tests at room temperature. The morphology of the thermosets was examined by scanning electron microscopy. Cured PVAc/epoxy blends are phase separated, arising two phases that correspond to a PVAc-rich phase and to the epoxy rich-phase. The morphology evolves from nodular to inverted as the PVAc content increases. Intermediate compositions present combined morphologies, in which nodular and inverted regions are detected. The tensile properties at room temperature reveal that combined morphologies present the most ductile behaviour. The glass transition temperatures (T g) of PVAc and of epoxy phases in the blends are different from those of the neat polymers. The profile of the loss modulus (E″)–temperature curves are correlated with the change in morphology that appears increasing the PVAc content. The storage modulus (E′)–temperature curves are highly dependent on the morphology of the samples. The E′-composition dependence is predicted using several models for two-phase composites. The low-temperature β-relaxation of the epoxy is slightly modified by the presence of PVAc. The activation energies of the α and β-relaxations are not dependent on the blend morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call