Abstract

Ca(2+) signalling in exocrine acinar cells has been shown to be both polarized and pulsatile in all cell types tested, except acutely isolated mouse lacrimal acinar cells. Lacrimal cells are also unusual in that they display a very low sensitivity to Ins(1,4,5) P (3) (Ins P (3)) that may be enhanced by placing the cells in primary culture for 12-72 h or by intracellular infusion of a low concentration of Ins(1,3,4,5) P (4) (Ins P (4)). We have proposed previously that this atypical behaviour stemmed from vesiculation of the endoplasmic reticulum (ER) incurred during isolation of the cells and, furthermore, that time in culture or Ins P (4) increased sensitivity to Ins P (3) by increasing ER integrity [Smith, Harmer, Letcher and Irvine (2000) Biochem. J. 347, 77-82]. We have measured the half time for fluorescence recovery after photobleaching (FRAP) of a fluorescent marker (Mag-fluo 4) loaded into the ER lumen in order to determine directly the functional integrity of the ER in lacrimal cells. The half-time for FRAP was increased (indicating a reduction in the functional integrity of the ER) following exposure to anti-microtubule agents (taxol and nocodazole) known to perturb ER structure and decreased (indicating an increase in the functional integrity of the ER) by time in culture and exposure to Ins P (4). The action of Ins P (4) was particularly pronounced because it occurred under patch-clamp whole-cell conditions that were themselves found to reduce ER functional integrity. These data show that ER remodelling could be a physiological regulator of Ca(2+) signalling and indicate a role for Ins P (4) in control of this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.