Abstract

The authors examined the correlation between changes in the apparent diffusion coefficient, regional water content, and tissue ultrastructure after vasogenic brain edema. Vasogenic edema was induced in the white matter of six cats by cortical cold lesioning. The trace of diffusion tensor (Trace[D]) obtained from magnetic resonance imaging to measure the orientationally averaged water diffusibility was compared with the corresponding tissue water content determined by gravimetric studies and with ultrastructural water localization. Edema fluid had spread to the subcortical and deep white matter by 4.5 hours postlesioning. The increase in Trace(D) showed a significant linear correlation with the increase in tissue water content, both in the subcortical and deep white matter as follows: y = 45.5x - 2367 (r = 0.94) and y = 37.0x - 1769 (r = 0.93), respectively, where x is the water content (gram water/gram tissue) and y the Trace(D) (x 10(-6) mm2/second). On histological examination, nerve fibers were found to be dissociated in the white matter and the extracellular space was markedly enlarged with protein-rich fluid. No noticeable hydropic swelling of the cellular components was observed. A linear correlation was observed between increases in Trace(D) and increases in extracellular water volume in in vivo vasogenic brain edema. A similar correlation between the subcortical and deep white matter showing different arrangements of nerve fibers (parallel compared with intermingled, respectively) indicated that measurement of Trace(D) is a suitable parameter for the evaluation of vasogenic brain edema.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.