Abstract
[Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.