Abstract

A semiconductor quantum dot (QD) can generate highly indistinguishable single-photons at a high rate. For application in quantum communication and integration in hybrid systems, control of the QD optical properties is essential. Understanding the connection between the optical properties of a QD and the growth process is therefore important. Here, we show for GaAs QDs, grown by infilling droplet-etched nano-holes, that the emission wavelength, the neutral-to-charged exciton splitting, and the diamagnetic shift are strongly correlated with the capture zone-area, an important concept from nucleation theory. We show that the capture-zone model applies to the growth of this system even in the limit of a low QD-density in which atoms diffuse over $\mu$m-distances. The strong correlations between the various QD parameters facilitate preselection of QDs for applications with specific requirements on the QD properties; they also suggest that a spectrally narrowed QD distribution will result if QD growth on a regular lattice can be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call