Abstract

Selectivities that deviate from S(N)1 stereoelectronic models in the nucleophilic substitutions of tetrahydropyran acetals were investigated. When weak nucleophiles were employed, stereoselectivities conformed to known S(N)1 stereoelectronic models. In contrast, stereoselectivities in the substitutions of acetals with strong nucleophiles depended on reaction conditions. Erosions in selectivities were observed when strong nucleophiles were employed in the absence of coordinating counterions. These erosions in selectivities are attributed to rates of nucleophilic additions to oxocarbenium ion intermediates that approach the diffusion limit. When triflate counterions were present, however, S(N)2-like pathways became accessible with strong nucleophiles. In most cases examined, the major stereoisomers formed from reactions that proceeded through S(N)2-like pathways were opposite to the major stereoisomers formed from the analogous reactions that proceeded through S(N)1 pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call