Abstract

The functional composition of herbivorous insect assemblages was correlated with aspects of new and mature leaf surface features, anatomy and morphology across 18 co-occurring plant species. Multivariate analyses of insects and leaf traits revealed that the functional composition of the herbivore assemblage was more strongly correlated with leaf structural traits than with leaf constituents. Leaf traits were more strongly correlated with the functional composition of the herbivore assemblage than with its taxonomic composition. Densities of sessile phloem feeders, rostrum chewers, and all herbivores were significantly negatively correlated with specific leaf weight, lamina and cuticle thickness, vascular tissue depth and stomate length, and were significantly positively correlated with stomate density. External chewer densities were significantly negatively correlated with percent lignified vein area, and significantly positively correlated with leaf surface area and the distance between lignified tissues. Spine-like leaves were associated with significantly lower densities of sessile phloem feeders, external chewers and all herbivores compared to kite leaves (kite leaves are comprised of unfortified leaf tissue supported by a framework of vascular tissue). The presence of a thickened leaf hypodermis was associated with significantly lower densities of external chewers and rostrum chewers, while midrib protection was associated with significantly lower densities of external chewers. Leaf structural traits may not be the proximal factors influencing herbivorous insects, as leaf structural traits are correlated with many other plant traits such as photosynthetic rate, relative growth rate and leaf life-span. Nonetheless, these results indicate that certain leaf structural traits may potentially be used to predict the functional structure of herbivorous insect assemblages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.