Abstract

Plasmonic nanostructures with subwavelength confinement are of great importance for the development of integrated nanophotonic circuits and devices. Here, we experimentally investigate how the polarization of the emitted light from nanowire-particle junction relies on the incident polarization. We demonstrate that the correlations can be effectively modulated by the particle position relative to the wire. By varying the wire-particle gap with only several nanometers, the nanowire-particle junction can be changed from polarization maintainer to rotator. Then, by moving the particle along the wire within half of the surface plasmon polariton (SPP) beat, the polarization behaviors can be tuned from positive to negative correlation. The mechanism can be well understood by the hybridization of wire-particle coupled mode and propagating SPP modes, which is verified by finite-difference time-domain simulations. These findings would provide a new degree of freedom for manipulating light polarization at the nanometer scale and additional flexibility for constructing nanophotonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.