Abstract

The reorganization of the light-harvesting antenna in the thylakoid membranes upon phosphorylation of some of its apoproteins was further characterized in vivo using the green algae Chlamydomonas reinhardtii. To this end we have studied light-to-dark transitions on intact cells placed in the anaerobic state using the F34 mutant strain which lacks PS II centers. We show that the 50% decrease in fluorescence yield in such transitions is accompanied by a 50% increase in PS I antenna size. The half-times of the kinetics of the fluorescence changes in the dark-to-light and light-to-dark transitions are of 320 and 120 s, respectively. The rate-limiting steps in these transitions are attributed to the dephosphorylation and phosphorylation processes themselves rather than to the activation of the kinase or to the diffusion of the phosphorylated complexes in the thylakoid membrane. Accordingly, the changes in phosphorylation of three of the main phosphopolypeptides occur with the same kinetics as those of the fluorescence changes. Different phosphorylation kinetics are observed for two phosphopolypeptides which are, however, also part of the light-harvesting complexes. Possible heterogeneities in the kinase enzymatic activities are discussed. The peculiar status of the phosphopolypeptide D2, associated with the PS II center, is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.