Abstract

Point defects have been introduced into YBa/sub 2/Cu/sub 3/O/sub 7/ through low energy helium ion irradiation in order to probe the origin of dissipation in a current-carrying superconductor. Resistivity, infrared reflectance and x-ray diffraction measurements indicate that the films are not chemically altered and that the induced point defects act as scattering centres. Measured electric field-current density characteristics are found to be well described by a model based on quantum current fluctuations. This description is used to extract the change in the superconducting carrier density with ion damage which agrees well with direct measurements of the same quantity by infrared reflectance. The implications of the relation between dissipation and the superconducting carrier density, or alternatively the magnetic penetration depth, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.