Abstract

Primates show distinctions in hearing sensitivity and auditory morphology that generally follow phylogenetic patterns. However, few previous studies have attempted to investigate how differences in primate hearing are directly related to differences in ear morphology. This research helps fill this void by exploring the form-to-function relationships of the auditory system in a phylogenetically broad sample of non-human primates. Numerous structures from the outer, middle, and inner ears were measured in taxa with known hearing capabilities. The structures investigated include the overall size and shape of the pinna, the areas of the tympanic membrane and stapedial footplate, the masses and lever arm lengths of the ossicles, the volumes of the middle ear cavities, and the length of the cochlea. The results demonstrate that a variety of auditory structures show significant correlations with certain aspects of hearing (particularly low-frequency sensitivity). Although the majority of these relationships agree with expectations from auditory theory, some traditional (and possibly outdated) ideas were not supported. For example, the common misconception that higher middle ear transformer ratios (e.g., impedance transformer ratio) result in increased hearing sensitivity was not supported. Although simple correlations between form and function do not necessarily imply causality, the relationships defined in this study not only increase our understanding of auditory patterns in extant taxa but also lay the foundation to begin investigating the hearing in fossil primates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call