Abstract

This manuscript examines the correlations between the hot-spot velocity (an observable signature of residual kinetic energy), low-mode implosion asymmetries, and burn amplification in inertial confinement fusion implosions on the National Ignition Facility (NIF). Using a combination of two-dimensional axis-symmetric and three-dimensional radiation-hydrodynamic simulations coupled to neutronics, we find that for typical NIF implosions, the stagnation asymmetry multiplies the observed hot-spot velocity anywhere from 80% to 120%, while burn amplification always increases it. Additionally, we find stagnation asymmetry typically deflects the observed hot-spot flow. The two mechanisms (low-mode implosion asymmetries and burn amplification) can be decoupled, and application of a simple model to a database of cryogenic implosions on the NIF infers the total hot-spot velocity amplification. This finding modifies the interpretation of data collected from inertial confinement fusion experiments and impacts the magnitude and origin of low-mode asymmetries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call