Abstract

Aggregation-competent myxamoebae of the cellular slime mold Dictyostellium discoideum are known to exhibit two responses to extracellular pulses of 3′5′-cyclic AMP: an immediate chemotactic movement; and a delayed generation of intracellular cyclic AMP which is subsequently released into the medium. The mechanism of the latter, the so-called signalling response, may depend on alterations in intracellular metabolite levels and is the subject of this communication. Myxamoebae of the wild-type strain NC-4 of D. discoideum were suspended in an aerated, stirred 17 mM potassium phosphate buffer. pH 6.0, at a concentration of approx. 6 · 10 −7 cells/ml (8%, v/v) at 25°C and were pulsed with 1. 10 −8—1 · 10 −7 M cyclic AMP at 10–20-min intervals for periods of 3–5 h over incubation of 4–9 h. Suspensions were monitored continuously for transient turbidity decreases following the cyclic AMP pulses as an indication of the magnitude and duration of the cellular response to cyclic AMP. When the pattern of turbidity decrease indicated that a signalling response had developed, samples were withdrawn at 10–15-s intervals from the suspension, inactivated with perchloric acid, and analyzed for cyclic AMP, ATP, ADP, AMP, pyruvate, and glucose 6-phosphate. In separate experiments, steady-state oxygen tension was monitored along with turbidity to detect possible changes in respiratory rate. The following consistent patterns were observed after the added cyclic AMP pulse: a transient increase in the ADP level which reaches maximum between 0.7 and 1.7 min; transient decreases in ATP and pyruvate which concide with and approximately equal the magnitude of the increase in ADP; a later increase in glucose 6-phosphate which reaches maximum approx. 2 min after the ADP

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call