Abstract

A modified Wang-Landau density-of-states sampling approach has been performed to calculate the excess entropy of liquid metals, Lennard-Jones (LJ) system and liquid Si under NVT conditions; and it is then the residual multiparticle entropy (S(RMPE)) is obtained by subtraction of the pair correlation entropy. The temperature dependence of S(RMPE) has been investigated along with the temperature dependence of the local atomic-level pressure and the pair correlation functions. Our results suggest that the temperature dependence of the pair correlation entropy is well described by T(-1) scaling while T(-0.4) scaling well describes the relationship between the excess entropy and temperature. For liquid metals and LJ system, the -S(RMPE) versus temperature curves show positive correlations and the -S(RMPE) of liquid Si is shown to have a negative correlation with temperature, the phase-ordering criterion (based on the S(RMPE)) for predicting freezing transition works in liquid metals and LJ but fails in liquid Si. The local atomic-level pressure scaled with the virial pressure (σ(al)/σ(av)) exhibits the much similar temperature dependence as -S(RMPE) for all studied systems, even though simple liquid metals and liquid Si exhibit opposite temperature dependence in both σ(al)/σ(av) and -S(RMPE). The further analysis shows that the competing properties of the two effects due to localization and free volume on the S(RMPE) exist in simple liquid metals and LJ system but disappear in liquid Si, which may be the critical reason of the failure of the phase-ordering criterion in liquid Si.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call