Abstract
Two main metrics are usually employed to assess the quality of medical ultrasound (US) images, namely the contrast and the spatial resolution. A number of imaging algorithms have been proposed to improve one of those metrics, often at the expense of the other one. This paper presents the application of a correlation-based ultrasound imaging method, called Excitelet, to medical US imaging applications and the inclusion of a new Phase Coherence (PC) metric within its formalism. The main idea behind this algorithm, originally developed and validated for Non-Destructive Testing (NDT) applications, is to correlate a reference signal database with the measured signals acquired from a transducer array. In this paper, it is shown that improved lateral resolutions and a reduction of imaging artifacts are obtained over the Synthetic Aperture Focusing Technique (SAFT) when using Excitelet in conjunction with a PC filter. This novel method shows potential for the imaging of specular reflectors, such as invasive surgical tools. Numerical and experimental results presented in this paper demonstrate the benefit, in terms of contrast and resolution, of using the Excitelet method combined with PC for the imaging of strong reflectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.