Abstract

Fibre Bragg gratings have many sensing applications, mainly for measuring strain and temperature. The physical quantity that influences grating uniformly along its length causes a related shift of the Bragg wavelength. Many peak detection algorithms have been proposed, among which the most popular are the detection of maximum intensity, the centroid detection, the least square method, the cross-correlation, auto-correlation and fast phase correlation. Nonuniform gratings elongation is a cause of spectrum deformation. The introduction of non-uniformity can be intentional or appear as an unintended effect of placing sensing elements in the tested structure. Heterogeneous impacts on grating may result in additional errors and the difficulty in tracking the Bragg wavelength based on a distorted spectrum. This paper presents the application of correlation methods of peak wavelength shifts estimation for non-uniform Bragg grating elongation. The autocorrelation, cross-correlation and fast phase correlation algorithms are considered and experimental spectra measured for axisymmetric strain field along the Bragg grating are analyzed. The strain profile consists of constant and variable components. The results of this study indicate the properties of correlation algorithms applied to moderately non-uniform elongation of an FBG sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.